Search results

1 – 10 of 309
Open Access
Article
Publication date: 8 July 2022

Maha Alsabbagh and Waheeb Essa Alnaser

Bahrain has set a national target of achieving carbon neutrality by 2060, with an interim goal of a 30% reduction in CO2e emissions by 2035. The aim of this policy brief is to…

2714

Abstract

Purpose

Bahrain has set a national target of achieving carbon neutrality by 2060, with an interim goal of a 30% reduction in CO2e emissions by 2035. The aim of this policy brief is to provide insights on how carbon neutrality in Bahrain can be achieved.

Design/methodology/approach

A review of literature related to climate change mitigation in general, and that related to Bahrain in particular, was carried out.

Findings

Given that the carbon intensity of Bahrain's economy is relatively high, achieving carbon neutrality requires not only technologies for reducing CO2e emissions at the source and enhanced carbon sinks, but it also requires the introduction of a circular economy culture and efforts to foster pro-environmental behavior within the population. The involvement of different stakeholders in the journey toward carbon neutrality is critical, along with the formulation of requisite policies regulating the roles of technology, behavior and research.

Originality/value

Pathways to achieve carbon neutrality in Bahrain were explored, and areas for policy focus were recommended.

Details

Arab Gulf Journal of Scientific Research, vol. 40 no. 1
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 5 December 2018

Obadia Kyetuza Bishoge, Lingling Zhang and Witness Gerald Mushi

This study aims to investigate the challenges facing the implementation of the natural gas policy in Tanzania.

Abstract

Purpose

This study aims to investigate the challenges facing the implementation of the natural gas policy in Tanzania.

Design/methodology/approach

A structured questionnaire was used to collect data, while the principal component analysis and statistical tests were used to explore the relationship between the opinions on the influential factors for the natural gas policy implementation and the demographic information.

Findings

The findings showed that over 50 per cent of the respondents regarded poor community participation and transparency and accountability as the major policy implementation challenges. Most of the demographic information showed the statistically significant effects of the policy implementation influential factors.

Originality/value

This paper provides the current challenges facing the implementation of the national natural gas policy in Tanzania.

Details

International Journal of Energy Sector Management, vol. 13 no. 3
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 1 February 2005

M. El‐Batouti

The objective of the present work was to study the kinetics of copper cementation on Fe metal in an acetone‐water medium and in a dioxane‐water medium.

Abstract

Purpose

The objective of the present work was to study the kinetics of copper cementation on Fe metal in an acetone‐water medium and in a dioxane‐water medium.

Design/methodology/approach

The impact of solvent concentration on cementation rate was determined by measuring the rate of copper cementation from CuSO4 onto an iron plate in the absence and in the presence of acetone and dioxane solvents.The thermodynamic parameters ΔH#, ΔS# and ΔG# of the cementation of CuSO4‐organic solvents were calculated. Linear plots of ΔH# versus ΔS# were obtained.

Findings

It was demonstrated that the rate of cementation decreased with increasing concentration of solvents and increasing temperature. The isokinetic temperature data indicate that the cementation reaction is controlled by the entropy of the system.

Originality/value

The findings have important implications for the reclamation of toxic and valuable metals from industrial waste streams.

Details

Anti-Corrosion Methods and Materials, vol. 52 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 4 April 2016

Guang Chen, Bomin Huang, Hui Liu, Y.C. Chan, Zirong Tang and Fengshun Wu

The purpose of this paper is to investigate microstructure and properties of Sn3.0Ag0.5Cu-XAl2O3 composite solder which were prepared through powder metallurgy route.

Abstract

Purpose

The purpose of this paper is to investigate microstructure and properties of Sn3.0Ag0.5Cu-XAl2O3 composite solder which were prepared through powder metallurgy route.

Design/methodology/approach

Sn3.0Ag0.5Cu (SAC305)-XAl2O3 (X = 0.2, 0.4, 0.6, 0.8 Wt. %) composite solders were prepared through the powder metallurgy route. The morphology of composite solder powders which consists of Al2O3 particles and SAC solder powders after ball milling was observed. The retained ratio of Al2O3 nanoparticles in composite solder billets and solder joints were also quantitatively measured. Furthermore, the as-prepared composite solder alloys were studied extensively with regard to their microstructures, thermal property, wettability and mechanical properties.

Findings

After ball milling, the Al2O3 nanoparticles added were observed embedded into the surface of SAC solder powders. Only about 5-10 per cent of the initial Al2O3 nanoparticles added were detected in the composite solder joints after reflow. In addition, finer ß-Sn grains were achieved with addition of Al2O3 nanoparticles; the Al2O3 nanoparticles were found retained in the composite solder matrix. Besides, negligible changes in melting temperature and the considerably reduced undercooling were obtained in composite solder alloys. Wettability was improved by appropriate addition of Al2O3 nanoparticles. Microhardness and shear strength of composite solders were both improved after Al2O3 nanoparticles addition.

Originality/value

This paper indicated that powder metallurgy route offered a feasible approach to produce nanoparticle reinforced composite solder. In addition, the quantitative analysis of the actual retained ratio of the Al2O3 nanoparticles in solder joints provided practical implications for the manufacture of composite solders.

Details

Soldering & Surface Mount Technology, vol. 28 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 5 April 2013

Roman Koleňák and Michal Chachula

The purpose of this paper is to study Bi‐11Ag solder for higher application temperatures. The aim of the research work was to determine the soldering, thermal and mechanical…

Abstract

Purpose

The purpose of this paper is to study Bi‐11Ag solder for higher application temperatures. The aim of the research work was to determine the soldering, thermal and mechanical properties of Bi‐11Ag solder.

Design/methodology/approach

To determine the melting point interval of experimental Bi‐11Ag solder, DSC analysis was performed. The contact angles were studied on a copper, nickel and silver substrate by use of a sessile drop method. Wettability tests were realised at a temperature of 380°C in a shielding atmosphere (90% N2+10% H2). Based on experience achieved with wetting angle measurements, the specimens for measurement of shear strength of Cu, Ni and Ag/Bi‐11Ag joints were fabricated. EDX analysis was used for the study of the solder interaction with the surface of the three metallic substrates.

Findings

The best wettability at soldering in a shielding atmosphere was achieved with silver. The wetting angle at 30 min attained the value of 23°. The worst wettability was observed on copper, where at 30 min the wetting angle was 55°. Average shear strength varied from 31 to 45 MPa. The highest strength was obtained with the Cu substrate whereas the lowest was with the Ni substrate. The lowest strength achieved with the Ni substrate was caused by formation of brittle intermetallic phase NiBi3. Joint formation is realised by eutectic reaction at the contact of Bi with the surface of the copper substrate. Similar joint formation by eutectic reaction occurs also at Bi interaction with the surface of the Ag substrate. At Bi interaction with the nickel substrate a new intermetallic phase (NiBi3) is formed.

Originality/value

Wettability of Bi‐11Ag solder on Cu, Ag and Ni substrates was determined at application of a shielding atmosphere (90% N2+10% H2). Wettability was determined also at application of ZnCl2‐NH4Cl flux. The shear strength of Bi‐11Ag on different substrates was determined. The mechanism of joint formation was analysed.

Details

Soldering & Surface Mount Technology, vol. 25 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 4 September 2020

Fawzi Hyder and Mahsa Khoshnoud

This paper examines how sophisticated and better-informed investors, such as short sellers, trade on information along the supply chain. Given the economic linkages between…

Abstract

Purpose

This paper examines how sophisticated and better-informed investors, such as short sellers, trade on information along the supply chain. Given the economic linkages between suppliers and customers, one would expect short sellers to trade on such information and to capitalize on investors' inattention to such economic links.

Design/methodology/approach

This paper uses both multivariate regression analysis and portfolio analysis where the time series averages of equally weighted monthly portfolio returns are reported to explore the abnormal returns of long-short trading strategies.

Findings

Results indicate that short interest predicts unexpected earnings news, consistent with short sellers extracting information from economic relationships. There is a strong negative relationship between short interest in the supplier firm and the one-month future stock return of the customer firm. This negative relation significantly persists for at least 12 months. One plausible channel explaining the information content of supplier (customer) firm's short interest for the customer (supplier) firms is the short sale constraints on the customer (supplier) firms.

Originality/value

The paper addresses a gap in the literature by examining whether short selling in a firm in the months leading up to a customer's (supplier's) negative shock is negatively correlated to the customer's (supplier's) future performance. Overall, the findings suggest that short sellers play an important role in the price discovery of related firms in the supply chain, which is beyond the direct effects documented in prior literature.

Details

Review of Behavioral Finance, vol. 13 no. 5
Type: Research Article
ISSN: 1940-5979

Keywords

Article
Publication date: 18 March 2022

Bangyao Han, Fenglian Sun, Chi Zhang and Xinlei Wang

This paper aims to investigate the effect of the Cu, Ni and Ag addition in Sn5Sb-based alloy on the mechanical properties and its mechanism.

Abstract

Purpose

This paper aims to investigate the effect of the Cu, Ni and Ag addition in Sn5Sb-based alloy on the mechanical properties and its mechanism.

Design/methodology/approach

The micro-indentation, creeping test of the Cu/Sn5Sb–0.5Cu–0.1Ni–0.5Ag/Cu and Cu/Sn–5Sb/Cu were conducted, and its microstructure was analysed. The scanning electron microscope and the metallographic microscope characterized the microstructure of the Sn5Sb–0.5Cu–0.1Ni–0.5Ag/Cu and Sn–5Sb/Cu joints.

Findings

The microstructure of Cu/Sn5Sb–0.5Cu–0.1Ni–0.5Ag/Cu is distributed with the fine (Cu,Ni)6Sn5 and Ag3Sn intermetallic compounds (IMCs), whereas the Cu6Sn5 and Sn3Sb2 in Cu/Sn–5Sb/Cu is larger and far more less. This investigation reveals that the addition of the Cu, Ni and Ag elements reinforced mechanical properties and provided a technical basis for the development of Sn–Sb alloy with good mechanical properties.

Originality/value

This paper reveals that the hardness and the modulus of the bulk solder Cu/Sn–5Sb/Cu solder joints were improved with the addition of Cu, Ni and Ag trace elements. Meanwhile, the creep resistance and plasticity were also improved. This study has a great value for exploring high-performance Sn–Sb based solder alloy and has proved an example.

Details

Soldering & Surface Mount Technology, vol. 34 no. 5
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 23 September 2022

Amal A. Farahat, Ahmed A. Elansary and Hany A. Abdalla

Punching can trigger catastrophic failures in flat slabs because of its sudden nature resulting from exceeding the shear capacity of slabs. Effect of using recycled aggregate, as…

Abstract

Purpose

Punching can trigger catastrophic failures in flat slabs because of its sudden nature resulting from exceeding the shear capacity of slabs. Effect of using recycled aggregate, as an environmental-friendly alternative to traditional RC structures, on punching behavior of these slabs was not sufficiently investigated in the literature. Hence, this paper aims to experimentally study the effect of using recycled coarse aggregate (RCA) on the punching shear capacity (PSC) of RC flat slabs. The RCA is produced by crushing of waste of concrete standard cubes obtained from compression tests.

Design/methodology/approach

A total of 12 slab-column connection specimens with different slab thicknesses (140, 160 and 200 mm) and different RCA percentages (0%, 30% and 70%) were prepared and tested under a central point load, to test its effect on the behavior of flat slabs. The punching failure loads of the tested specimens were compared with those obtained according to the provisions of different international building codes.

Findings

Compared with natural aggregate concrete, mixes with 30% and 70% RCA experienced reductions in the compressive that did not exceed 4% and 21%, while reductions of 4% and 13% were observed for the tensile strength, respectively. The increase in the amount of RCA reduced the PSC by 0%–7%, 0%–4% and 4%–10% for slabs with a thickness of 140, 160 and 200 mm, respectively. For slabs with punching shear reinforcement (PSR), ACI 318 provided the closest estimation for the PSC by 9%, whereas EURO 2 overestimated the PSC by 25% and ECP 203 underestimated the PSC by 41%.

Research limitations/implications

The provided conclusions are obtained from the conducted experimental work where a constant W/C ratio, aggregate type and a maximum aggregate size of 19 mm for the RCA were adopted.

Originality/value

Enhancement in the behavior of flat slabs with various thicknesses and amounts of RCA because of introducing PSR is experimentally evaluated. The failure loads of the tested slabs with recycled and normal coarse aggregates were compared against different code provisions.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 November 2020

Riaz Muhammad and Umair Ali

This paper aims to analyze the effect of cerium addition on the microstructure and the mechanical properties of Tin-Silver-Copper (SAC) alloy. The mechanical properties and…

Abstract

Purpose

This paper aims to analyze the effect of cerium addition on the microstructure and the mechanical properties of Tin-Silver-Copper (SAC) alloy. The mechanical properties and refined microstructure of a solder joint are vital for the reliability and performance of electronics. SAC305 alloys are potential choices to use as lead-free solders because of their good properties as compared to the conventional Tin-Lead solder alloys. However, the presence of bulk intermetallic compounds (IMCs) in the microstructure of SAC305 alloys affects their overall performance. Therefore, addition of cerium restrains the growth of IMCs and refines the microstructure, hence improving the mechanical performance.

Design/methodology/approach

SAC305 alloy is doped with various composition of xCerium (x = 0.15, 0.35, 0.55, 0.75, 0.95) % by weight. Pure elements in powdered form were melted in the presence of argon with periodic stirring to ensure a uniform melted alloy. The molten alloy is then poured into a pre-heated die to obtain a tensile specimen. The yield strength and universal tensile strength were determined using a fixed strain rate of 10 mm per minute or 0.1667 mm s^(−1). The IMCs are identified using X-ray diffraction, whereas the elemental phase composition and microstructure evolution are, respectively, examined by using electron dispersive spectroscopy and scanning electron microscopy.

Findings

Improvement in the microstructure and mechanical properties is observed with 0.15% of cerium additions. The tensile test also showed that SAC305-0.15% cerium exhibits more stress-bearing capacity than other compositions. The 0.75% cerium doped alloy indicated some improvement because of a decrease in fracture dislocation regions, but microstructure refinement and the arrangement of IMCs are not those of 0.15% Ce. Different phases of Cu_6 Sn_5, Ag_3 Sn and CeSn_3 and ß-Sn are identified. Therefore, the addition of cerium in lower concentrations and presence of Ce-Sn IMCs improved the grain boundary structure and resulted refinement in the microstructure of the alloy, as well as an enhancement in the mechanical properties.

Originality/value

Characterization of microstructure and evaluation of mechanical properties are carried out to investigate the different composition of SAC305-xCerium alloys. Finally, an optimized cerium composition is selected for solder joint in electronics.

Details

Soldering & Surface Mount Technology, vol. 33 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 17 October 2019

Muhammad Aamir, Riaz Muhammad, Majid Tolouei-Rad, Khaled Giasin and Vadim V. Silberschmidt

The research on lead-free solder alloys has increased in past decades due to awareness of the environmental impact of lead contents in soldering alloys. This has led to the…

Abstract

Purpose

The research on lead-free solder alloys has increased in past decades due to awareness of the environmental impact of lead contents in soldering alloys. This has led to the introduction and development of different grades of lead-free solder alloys in the global market. Tin-silver-copper is a lead-free alloy which has been acknowledged by different consortia as a good alternative to conventional tin-lead alloy. The purpose of this paper is to provide comprehensive knowledge about the tin-silver-copper series.

Design/methodology/approach

The approach of this study reviews the microstructure and some other properties of tin-silver-copper series after the addition of indium, titanium, iron, zinc, zirconium, bismuth, nickel, antimony, gallium, aluminium, cerium, lanthanum, yttrium, erbium, praseodymium, neodymium, ytterbium, nanoparticles of nickel, cobalt, silicon carbide, aluminium oxide, zinc oxide, titanium dioxide, cerium oxide, zirconium oxide and titanium diboride, as well as carbon nanotubes, nickel-coated carbon nanotubes, single-walled carbon nanotubes and graphene-nano-sheets.

Findings

The current paper presents a comprehensive review of the tin-silver-copper solder series with possible solutions for improving their microstructure, melting point, mechanical properties and wettability through the addition of different elements/nanoparticles and other materials.

Originality/value

This paper summarises the useful findings of the tin-silver-copper series comprehensively. This information will assist in future work for the design and development of novel lead-free solder alloys.

Details

Soldering & Surface Mount Technology, vol. 32 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of 309